Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies.
نویسندگان
چکیده
The severe acute respiratory syndrome coronavirus (SARS-CoV) caused a worldwide epidemic in late 2002/early 2003 and a second outbreak in the winter of 2003/2004 by an independent animal-to-human transmission. The GD03 strain, which was isolated from an index patient of the second outbreak, was reported to resist neutralization by the human monoclonal antibodies (hmAbs) 80R and S3.1, which can potently neutralize isolates from the first outbreak. Here we report that two hmAbs, m396 and S230.15, potently neutralized GD03 and representative isolates from the first SARS outbreak (Urbani, Tor2) and from palm civets (SZ3, SZ16). These antibodies also protected mice challenged with the Urbani or recombinant viruses bearing the GD03 and SZ16 spike (S) glycoproteins. Both antibodies competed with the SARS-CoV receptor, ACE2, for binding to the receptor-binding domain (RBD), suggesting a mechanism of neutralization that involves interference with the SARS-CoV-ACE2 interaction. Two putative hot-spot residues in the RBD (Ile-489 and Tyr-491) were identified within the SARS-CoV spike that likely contribute to most of the m396-binding energy. Residues Ile-489 and Tyr-491 are highly conserved within the SARS-CoV spike, indicating a possible mechanism of the m396 cross-reactivity. Sequence analysis and mutagenesis data show that m396 might neutralize all zoonotic and epidemic SARS-CoV isolates with known sequences, except strains derived from bats. These antibodies exhibit cross-reactivity against isolates from the two SARS outbreaks and palm civets and could have potential applications for diagnosis, prophylaxis, and treatment of SARS-CoV infections.
منابع مشابه
Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus.
BACKGROUND Severe acute respiratory syndrome (SARS) emerged as a human disease in 2002. Detailed phylogenetic analysis and epidemiologic studies have suggested that the SARS coronavirus (SARS-CoV) originated from animals. The spike (S) glycoprotein has been identified as a major target of protective immunity and contains 3 regions that are targeted by neutralizing antibodies in the S1 and S2 do...
متن کاملHuman Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants
BACKGROUND Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncomp...
متن کاملSerological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63.
The serological response profile of severe acute respiratory syndrome (SARS) coronavirus (CoV) infection was defined by neutralization tests and subclass-specific immunofluorescent (IF) tests using serial sera from 20 patients. SARS CoV total immunoglobulin (Ig) (IgG, IgA, and IgM [IgGAM]) was the first antibody to be detectable. There was no difference in time to seroconversion between the pat...
متن کاملMolecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus.
Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reac...
متن کاملLongitudinally Profiling Neutralizing Antibody Response to SARS Coronavirus with Pseudotypes
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike protein (S) is a major target for neutralizing antibodies. Retroviral SARS-CoV S pseudotypes have been constructed and used to develop an in vitro microneutralization assay that is both sensitive and specific for SARS-CoV neutralizing antibodies. Neutralization titers measured by this assay are highly correlated to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 29 شماره
صفحات -
تاریخ انتشار 2007